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Turbulent transport in bulk-phase fluids and transport in porous media with 
fractal character involve fluctuations on all space and time scales. Consequently 
one anticipates constitutive theories should be nonlocal in character and involve 
constitutive parameters with arbitrary wavevector and frequency dependence. 
We provide here a nonequilibrium statistical mechanical theory of transport 
which involves both diffusive and convective mixing (dispersion) at all scales. 
The theory is based on a generalization of classical approaches used in 
molecular hydrodynamics and on time-correlation functions defined in terms of 
nonequilibrium expectations. The resulting constitutive laws are nonlocal and 
constitutive parameters are wavevector and frequency dependent. All results 
reduce to their convolution-Fickian, quasi-Fickian, or Fickian counterparts in 
the appropriate limits. 

KEY W O R D S :  Preasymptotic; dispersion; nonequilibrium; porous medium; 
heterogeneity. 

1. I N T R O D U C T I O N  

The evolution of a passive tracer within a velocity field exhibiting 
excitements on a continuum of scales typically defies representation via 
classical Fickian dispersion theory. This foundering is a result of random- 
ness occurring on all length scales relative to the scale of observation) ~) 
Two realizations of this paradigm, fully turbulent fluid transport and trans- 
port in porous media possessing a continuum of scales of heterogeneity, are 
both naturally ubiquitous and environmentally important. Contamination 
concerns relevant to these and other natural processes continually 
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reemphasize the need for an accurate general theory of dispersion. A 
correct description of turbulent mixing in the atmosphere is critical to 
prediction and control of many environmental contamination scenarios. 
Similarly, a clear understanding of dispersive mixing in subsurface geologi- 
cal environments is necessary to protect and maintain our groundwater 
resources. An enormous amount of effort has been directed to examination 
and reconstruction of dispersion theories, in both turbulent hydrodynamics 
and in porous-medium fluid dynamics (e.g., refs. 2-6). Yet no consequent 
construction is free of requisite unphysical restrictions (such as pertur- 
bation smallness) on representation of either allowable dynamics or 
heterogeneity, or both. Here we approach the construction of a general 
dispersion theory with tools of classical statistical mechanics. Within the 
conceptual framework of Hamiltonian dynamics, the resulting theory 
of dispersive mixing in environments with continuously evolving 
heterogeneity is fully rigorous and obtained without approximation. 

2. B A C K G R O U N D  

All subsequent analysis will be directed toward flows in porous media, 
as bulk-phase flows can be considered special cases wherein the specific 
surface area of the porous medium goes to zero. A fluid in a porous 
medium may be distinguished from its bulk-phase counterpart by two 
aspects: the presence of regions of excluded volume, and the adsorption of 
the fluid/solute onto the surface of the excluded volume. We will concern 
ourselves only with conservative tracers so that the latter distinction is of 
no consequence. The term "excluded volume" means simply the subset of 
position coordinates within the domain of the media that is inaccessible to 
connected fluid flow, including both the bulk solid matrix and inaccessible 
pore spaces. 

Historically for such systems, 161 Fickian constitutive theory has been 
enlisted to represent diffusion, and, more importantly in convective 
systems, conscribed as a model for dispersion. Discontinuities in mathe- 
matical (pointwise) definitions of both field and constitutive properties 
arise naturally from the existence of the spatially complex excluded volume. 
To circumvent this complication, constitutive relations are ascribed to 
volume averages of these properties, upon which continuum mechanical 
manipulations are executed to obtain models of the dynamics of the 
volume averagesJ 7~ The appropriate averaging volume for operational 
definitions of properties is known as the "representative elementary 
volume" (REV). The principal weakness in this approach is that rigorous 
proof of the existence of satisfactory averaging volumes (obeying certain 
ergodic and invariance requirements) exists only for idealized porous 



Preasymptotic Dispersion 861 

media. In fact, porous media exhibiting heterogeneity on a continuum of 
scales have no REV. I~ 

More generally, multiscale heterogeneity in the structure of the 
excluded volume leads to the so-called "scale effect" of dispersive transport 
in natural porous media. ~8~ In essence, the scale effect means the mixing 
length for dispersion is a function of time or travel distance and it implies 
dispersion is non-Markovian. Over scales of time and space on which the 
structure of the excluded volume is continuously evolving, classical Fickian 
diffusive notions and the derivative dispersive theories break down and 
must be replaced by more general constitutive relations, t9~ It is this latter 
point that leads to the "scale" effect. 

Here we develop a nonequilibrium statistical mechanical theory of 
transport which involves both diffusive and convective mixing (dispersion) 
at all scales. The results are based on a generalization of classical approaches 
used in molecular hydrodynamics and on time-correlation functions 
defined in terms of nonequilibrium expectations. We begin by finishing this 
background section with the complement of statistical mechanical concepts 
necessary for the subsequent constructions. 

The setting is that of both classical equilibrium and nonequilibrium 
statistical mechanics. Consider a fluid mixture consisting of N constituent 
particles residing in a bath of M fluid particles with position coordinates 
given by x =  {xl(t) ..... XN+M(t) } and conjugate momenta given by p ( t ) =  
{pt(t) ..... PN+ M(t)}. Because of the excluded volume V~. associated with the 
solid matrix within which the fluid resides, the probability of finding the ith 
particle in an element of volume dx; = dx~ x dx~ x dx~ (here the superscript 
indicates Cartesian coordinate and the subscript identifies the particle) is 
nonzero only when dx~ coincides with the complement of V~.; that is, when 
d x  it~ V s" is nonzero. The phase space for the N +  M = J particles consists 
of 

g2 = ( VCs) J • R 3J (1) 

Here, the solid is treated as an external force field acting on the fluid plus 
constituent mixture. Let f ( x ,  p; t) be the nonequilibrium probability per 
unit hypervolume of phase space that each particle i is respectively located 
in dx~ at (x~; t) with momentum in dpi at (Pi, t). We will assume the system 
is Hamiltonian, so that ~~ 

af -~ = -- iLf  (2) 

where the Liouville operator represents the phase space convective derivative 

i L = ~  [mP~Jj 'Vxj+Fj 'Vpj]-V.V (3) 
/=  I 
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with 

and 
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v=(Ptkm, ..... m,PJ' F, ..... Fj) (4) 

V=(Vx, ..... Vx~,Vp, ..... Vp~) (5) 

and Fk is the total force on the kth particle (i.e., the fluid-fluid and fluid- 
solid contribution). Equilibrium is said to exist if f does not explicitly 
depend on time, in which case we label it as fo, and 

Lfo=0  (6) 

The expected value of any dynamic variable a ( t )=  ~(x(t), p(t)) is given by 

<ct(t)> = ~a ct(x(t), p(t) ) f(x,  p; t) dx dp (7) 

The equilibrium expected value is given by 

<co(t) > o = f a(x(t), p(t))fo(x, p) dx dp (8) 
Jo 

It is well known that 

and that 

d 
dt <r = 0 (9) 

d 
at (a(t)> = (&(t)) (10) 

3. M E M O R Y  FUNCTION F O R M A L I S M  FOR EQUIL IBRIUM 
T I M E  CORRELATION FUNCTION 

As motivation for subsequent sections we briefly review the Mori- 
Zwanzig theory of equilibrium time correlation functions. ~'~2~ Let 7J(t) be 
a normalized equilibrium time correlation function of the dynamic variable 
~(t); that is, 

~ ( t ) =  (a(t) ~*(0)>o = (a(t), a(0))o (11) 
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where the asterisk indicates complex conjugate, ( . , - )  indicates complex 
inner product, and without loss of generality it is assumed ~(0 )=  1 and 
~(0)=0 .  It is known c~21 that 

tP(t)= -[~k(r) ~(t-r)dr (~2) 

where the memory function k(r) is given by 

k( z ) = (exp( itQ~L ) ~(0), ~(0))o (13) 

and the action of the complementary projection operator Q, on the 
function ~,(t) is 

Q,y(t) = y(t) - ct(0)(y(t), ct(0))o (14) 

and finally where exp(itQ,L) is defined by its Neumann expansion. All the 
physics of the dynamic process is wound up in the memory function, which 
in turn defines all transport coefficients. 

Motivation for Eqs. (9)-(12) is provided by an expansion on the 
following canonical example. A Brownian diffusive process for a massive 
particle bathed in a continuum fluid of lighter particles obeys the momen- 
tum balance 

ma(t) = -~v(t)  + b(t) (15) 

where m isthe particle mass, a(t) is its acceleration, r the friction constant, 
v(t) its velocity, and b(t) is a Brownian fluctuating force assumed 
uncorrelated with the initial velocity. If this equation is dotted with v(0) 
and equilibrium averages are taken, we get 

(~v(t) = - ~ C v ( t )  (16) 
m 

which has the solution 

Cv(t) = exp( - ~t/m) Cv(O) (17) 

Thus (16) is an asymptotic result in that it is valid for processes that show 
exponential decay in the velocity correlation. It is a Markovian result, 
resulting from the independence assumption: the time rate of change of the 
correlation is independent of the process history. To distill (16) from the 
general result (12), apply the Markovian approximation 

k ( r ) = f ( r )  ~/m (18) 
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to render a closure of (12), 

- ~  I ~ dr 6(r) ~ ( t - - z )  ~ , ( t )  = 
m a o  

This is solved by 

(19) 

~(t)  = exp( - tr ~(0) (20) 

If ~ ( t ) =  (v(t), v(0))o/(v(0), v(0))o, then the Markovian simplification, (17), 
results�9 Thus the velocity correlation in (16) is a specialization of the more 
general non-Markovian (12). In this latter case, correlations often exhibit 
persistent tails, such as is commonly observed for porous formations with 
evolving heterogeneity. 

A non-Markovian diffusive process generalizing (16) is found by setting 
ct in (11) to 

~tk(t) = exp[ik �9 x(t)]  (21) 

and 

~u~.(t) = G(k, t) = (~tk(t), Ctk(0)) o (22) 

with 

G(x, t )=  ( f i x -  ( x j ( t ) -  xj(0))] )o (23) 

where the caret denotes spatial Fourier transform. The function G is 
recognized as the self-part of the intermediate scattering function t~2~ and 
reports for given space-time point (x, t) the ensemble probability of finding 
a tagged particle there, given that originally it was elsewhere. As (~, being 
an equilibrium correlation function, satisfies (12), we have 

Ot - Jo (exp[iQexptik'xI~)]Lz] ik" v(0) e ik'xt0~, ik" v(0) eik'xtOI)0 

x 0(k, t - r) dr 

f2 = ik" (exp[iQexptik.x~lLr] v(0) e ~k'xl~ v(0) eik'~~ 

�9 [ ikd(k,  t - r ) ]  dr 

f2 - ik .  I~(k, r ) .  [ ikG(k,  t -  r ) ]  & (24) 

Inverse Fourier transform, using the dualities 

- ik*"~ Vx 
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and 

f (k )  ~(k)+-,f(x)* g ( x ) = I R f ( y  ) g ( x - - y ) d y  

yields from (24), "~ 

OG 
D(y, z ) ' V x _ y G ( X -  y, t - z ) d y d z  (25) 

where D(y, r) is the inverse Fourier transform of l~(k, z), which is a 
generalized wavevector- and frequency-dependent diffusion tensor. (~) This 
diffusion equation is valid for media with evolving heterogeneity such as 
structures with fractal character. 

4. M E M O R Y  FUNCTION F O R M A L I S M  FOR NONEQUIL IBRIUM 
T I M E  CORRELATION FUNCTIONS 

The standard projection operator methodology t~3~ for obtaining the 
memory function equation for equilibrium correlation functions does not 
work for nonequilibrium correlation functions. However, the following 
analysis is valid. Let ~u(t) be a nonequilibrium correlation function for the 
dynamic variable c~(t), 

~(t) = (~(t) ~*(0)) = (~(t), ~(0)), (26) 

such that 

We have 

~ ( 0 )  = (cz(O) c r  = 1 (27) 

q~(t) -- ~(t) = fa o~(t) ct*(O) jC(x, p; t) dx dp 

+ fa ~(t) c~*(O) f (x ,  p; t) dx dp 

= ( ~ ( t )  ~ * ( 0 ) )  

where we have used f =  O. Similarly 

qb(t) = -- 9( t )  = -- (~(t) oe*(O)) 

(28) 

(29) 
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Introducing the Laplace transform denoted by the tilde, we have 

(o(s) = s g ( s )  - 1 

�9 (s) = -s2q- ' (s)  + s + q~(O) 

where s is dual to t. 
It follows that for s not equal to zero 

o r  

[s2 g'(s) - s -  q~(0)] g'(s) 

= [  s{t(s) - 1 -q~(s0)][ 1 + q~ + s Z ~ ' ( S ) s  

Cushman et  al. 

(30) 

(31) 

- s - o ( 0 ) ] s  " (32) 

~o(o) , % 

For [1 + ~o(O) / s -  ~ ( s ) / s ]  - 1  finite it follows that 

s ' ~ ( s ) - I  q ~ ( 0 )  [14_q~(0) ~ ) ] - '  . . . .  ~ (s )  g'(s) 
S S 

(33) 

(34) 

Setting 

E %, ~(s) = 1 -r ~(s) (35) 
S 

and inverting (34) gives 

9(0 = -J'~ k(r) gt(t - r) dr + q0(O) (36) 

This equation has the same basic form as (12), but all averages are now 
nonequilibrium. 

5. N O N E Q U I L I B R I U M  DISPERSION 

Our goal in this section is to find the general nonequilibrium counter- 
part to (25). To this end we again define G and (~ as before except that 
averages are now nonequilibrium. The basis for the subsequent develop- 
ment is the additive decomposition of the Lagrangian coordinate of the 
tagged particle into a nonequilibrium average displacement ( x ( t ) )  and a 
fluctuation about this average x'(t), 

x ( t )=  (x ( t ) )  + x'(t) (37) 
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With this decomposition and assuming <x(0)> = 0 we have 

G(k, t )=  eik" <'l'l>(~'(k, t) (38) 

where 

6:'(k, t )=  <exp[ik �9 x'(t)]  exp[ - i k - x ' ( 0 ) ]  > (39) 

Because (~'(k, t) is a normalized correlation function, it satisfies 

aG -, 
= - I '  k (k, r) G'(k, t - r) dr + ~b(k, 0) (40) 

Jo 

where 

(o(k, O ) = < exp[ - ik " x'(O ) ] { d exp[ ik " x'( t ) ] } ,=o) 

= i k .  <v'(0) > (41) 

Note because <.> is a nonequilibrium average, <v'(t)> is in general 
nonzero. Without loss of generality we can set <v'(0)> =0.  From (38), it 
follows that 

ik (v(t))e-i~'<xt'~>G(k,t)+e -ik'<xln> c?d (42) - -  . 

Ot at 

Combining (42) with (40) gives 

at �9 <v(t)> t~(k, t ) -  /~'(k, r) (~'(k, t -  r) dr exp[ ik .  (x( t )>]  

= i k -  <v(t)> (~(k, t ) - f~/~ ' (k ,  r) 

x {expEik �9 <x(t)>,] exp[ - ik.  <x(t - r) >,_ ~3 } (~(k, t - r) dr (43) 

o r  

OG= ik" (v(t) > G(k' t ) -  Io f~'(k' r) A(k' t' r) ~(k' t -  r) (44) 

where the exponential differential displacement d(k, t, r) is given by 

A(k, t, r ) =  exp{ikr.  [ < x ( t ) > , -  ( x ( t -  r)>,_~]/r  } (45) 

which for small r is 
A(k, t, z )~  exp[ ikr .  <v(t)>] (46) 
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6. A N A L Y S I S  OF THE P E R T U R B E D  M E M O R Y  F U N C T I O N  

To return (44) to real space from wavevector space we must decom- 
pose/~' into an invertible form. From (35) it follows that 

~'(k, s ) =  [1 - ~(k,  s)/s] -~ ~(k,  s) (47) 

Now 

d2(~ , d 2 
~(k,  t) = - ---~-- = - ~ - ~  ( e x p [ i k .  x '( t)]  exp[ - i k .  x ' ( 0 ) ] )  

= - ik .  (a ' ( t )  exp[ ik  �9 x ' ( t )]  exp[ - i k .  x '(0)] ) 

- i k .  ( v ' ( t ) exp[ ik . x ' ( t ) ]  e x p [ - i k ,  x'(0)] v ' ( t ) ) . i k  (48) 

where a'(t) is the fluctuating component of the acceleration for the tagged 
particle. 

Let 

$',(k, t) = - (a ' ( t )  exp [ ik ,  x ' ( t )]  exp[ - i k .  x '(0)] ) (49) 

and 

~'2(k, t) = - (v ' ( t )  exp[ ik ,  x ' ( t )]  exp[ - i k .  x '(0)] v '( t))  (50) 

With these definitions we find 

~(k,  s ) =  ik" ~'l(k, s) + ik .  ~2(k, s).  ik (51) 

which when inserted into (47) gives 

~ ' ( k , s ) = i k  I~ '~(k,s)+ik 2, . �9 �9 D2(k, s) ik (52) 

where 

l~'j (k, s) = V~(k, s)[1 - ~(k,  s)/s] -~ (53) 

and 

' ~ t  "X D2(k, s) = ~'2(k, s)[1 - ~(k,  s)/s] -1 (54) 

Set Dr(k, ^ '  t) and D2(k, ^ '  t) to the inverse Laplace transforms of I~(k ,  s) and 
1~2(k, s), respectively, and insert them into (44) to obtain 

OG=ik ( v ( t ) ) G ( k , t ) - i k  f l I ) ' ~ ( k , r ) d ( k , t , z ) d ( k , t  z) dz _ _  , . _ 

Ot 

f2 ik ^'_ - �9 D,(k,  t),~(k, t, r ) .  [ikt~(k, t z)] dr (55) 
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Setting D](x, t, ~) and D2(x, t, ~) equal to the inverse Fourier transforms of 
l~'~,J and I)~A and applying the inverse transform to (55) gives the final 
form of the balance law, 

OG -V~  [ ( v ( t ) ) G ( x , t ) ] + V ~ "  D , ( y , t , r ) G ( x - y , t - z ) d y d ~  
Ot R3 

+V~" D z ( y , t , r ) . V ~ _ y G ( x - y , t - ~ ) d y d r  
R3 

(56) 

7. LOCAL E Q U I L I B R I U M  A S S U M P T I O N  

When convective fluid velocities are low with respect to heterogeneity 
sharpness we may expect nonequilibrium displacement fluctuations to 
reduce to equilibrium behavior within some characteristic length of 
medium uniformity. This condition is 

fo" II(v(r))II d ~ X  (57) 

where v(t) is the particle velocity, Tm is the relaxation time of the displace- 
ment fluctuation x'(t), and X is a measure of length of medium uniformity, 
such as a correlation length. In fractal domains, X is only defined below 
some fractal cutoff scale. In this case the displacement fluctuation x'(t) may 
be treated as an equilibrium process. 

In this section we examine the ramification of this local equilibrium 
assumption (LEA). It is shown that the fundamental expression (48) 
reduces to a simple single quadratic form in Fourier space, and that the 
resulting transport equation is equivalent to that obtained through classical 
Mori-Zwanzig (equilibrium process projection operator) theory. 

Equation (48), expressing the second derivative of the nonequilibrium 
fluctuation correlation function (~(x, t), reduces under equilibrium averag- 
ing as follows: 

( i k .  a'(t) eik'x'~')e -ik. x*~o) + ik. v'(t) eik'x'(t)e - i k  " x ' ( 0 ) V ' ( t )  �9 ik >o 

= ( ik"  {iL[v'(t)] eik'x'(')+ V'(t) iL[e ik'x'('l] } e-ik'x'(~ 

= ( iL[ ik  �9 v'(t) e ;k" x'('l] e-;k" ~'lO)) o 

= --ik" (v'(t) eik'~'C')iLe-ik'~'(~ 

= ik" (v'(t) e ik'~'")e-ik" x'(O)v,(0 ) )o" ik- 

= ik" Q(k, t)- ik (58) 
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where Q is the current density. This form in place of Y~ and Y2 of (51) 
renders the equilibrium analog to (52) as 

where now 

K ' ( k , s ) = i k ' f ) ~ ( k , s ) . i k  (59) 

O,,(k, s) = ~(k,  s)[1 - ~,,(k, s)/s] - '  (60) 

is the equilibrium fluctuation dispersion tensor in Fourier Laplace space. 
In (60), q~,, is the equilibrium analogy to �9 of (48): 

d 2 d 2 
~ ( k ,  t )=  - ~ _  G~(' k, t )=  - ~ 5  (e;k'"'t')e-ik'"'~~ (61) 

Following the course previously taken in development of the general non- 
equilibrium transport equation (56), we find in the LEA case that 
[analogous to (55)] 

OG ik (v(t))G(k,t)-ik.lo[),.(k,z)A(k,t,z).ikG(k,t r )dz 
Ot 

(62) 

and the final transport equation with equilibrium fluctuations becomes 

3G 
c~t= -v,,. [(v(tl) G(k, t)] 

+ V  x" 3D,.(y,t,z)'Vx_yG(x-y,t-z)dydz (63) 

where D,,(x, t, z) is the inverse Fourier transform of Oe(k, 3) A(k, t, r), and 
l),.(k, r) is in turn the inverse Laplace transform of l),.(k, s). 

It remains to show equivalence between (63) and the equilibrium fluc- 
tuation transport equation obtained via classical projection operator 
techniques. It is convenient to first demonstrate equivalence between the 
two respective fluctuation memory functions, starting from the wavevector- 
dependent generalization of the projection operator form in (13) tt4~ 

/~'(k, s) = (~*(k,  0) exp(itQ~L) ~(k, 0))0 (64a) 

and working toward the equilibrium form of the memory function 
developed here in (47), 

J~'(k, s) = [ 1 -s-'~(k, s)] -~ ~(k, s) (64b) 
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The term a(k, t) is the Fourier transform of an equilibrium phase variable 
{as in (13), in our case 0t(k, t ) = e x p [ i k ,  x'(t)]}, and Q= is defined in (14). 
Note the important difference between this specification and that of ( 2 1 ) -  
here x'(t) is the particle displacement fluctuation resulting from both 
diffusive and hydrodynamic dispersive forces, whereas (21) represents 
complete particle displacement resulting solely from diffusion. 

The Laplace transform of (64a), 

J~'(k, s ) =  <c/*(k, O)(s-iO=L) -1 0~(k, 0)>o (65) 

admits the operator identity A - I = B - I + A - I [ B - - A ] B - ~ ,  where 
Is--iQ=L] is A and [ s - i L l  is B, to yield 

/~'(k, s) = (ot*(k, 0)(s - iL)-1 o~(k, 0))o 

- ( (c*(k ,O) (s - iQ=L)- t iP=L(s - iL) - l~ (k ,O) )o  (66) 

The action of the projection operator in the second term is 

P=L(s-iL)-lci(k,O)=ia(k,O)(d~*(k,O)(s-iL)-td~(k,O))o (67) 

which renders (66) as 

.~'(k, s) = (d*(k,  O)(s - - iL)  - I  ~(k, 0))o 

+ (o~*(k, 0 ) ( s -  iQ=L)- 1 ~(k, 0))o 

• (~*(k, 0 ) ( s -  iL)- '  o~(k, 0))o (68) 

Now we revise the first factor of the second term, (~*(k, O)(s-iQ=L)-'  
0r 0))o. Applying again the same operator identity as before, now with 
A = [s- iQ=L] and B=s, we find that this term distributes to 

(~*(k, 0 ) ( s - i Q = L ) - I  co(k, 0))o 

= s-l(~/*(k,  0) a(k, 0 ) ) o +  (o[*(k, O)(s-iQ~L) -1 Q=iLa(k, 0))o 

= s - l ( ~ * ( k ,  0) ~(k, 0) )o  + s-I (c /*(k,  0 ) ( s -  iQ=L) -~ iLo~(k, 0))o 

+ s-I(o[*(k,  0 ) ( s -  iQ=L) -I e=il_~(k, 0))o 

= s-t(~/*(k,  0) 0qk, 0))o + s- t (c /*(k,  0 ) ( s - i Q = L ) - '  o~(k, 0))o 

+s-l(d*(k,O)(s-iQ=L)-la(k,O))o(OL*(k,O)d~(k,O))o (69) 

where the last line is reached using 0~(k, 0) = iLa(k, 0) and the fact that 

P=iL~(k, 0)=a (k ,  0)( ot*(k, 0) a(k, 0))o 
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N o w  

(~*(k, O) ~(k, 0))o = (~*(k, O) ~(k, 0))o = 0  

so (69) becomes simply 

(~*(k, 0 ) ( s -  iQ=L) -i cz(k, 0))o 

=s-I(d~*(k,O)(s-iQ=L)-l dL(k,O))o=S-I~'(k,s) (70) 

This allows us to rewrite expression (68) for the fluctuation memory 
function in the implicit form 

~'(k,  s )=  (d*(k, O)(s-  iL)-'  c~(k, 0))o 

+s-~'(k,s)(~*(k,O)(s-iL)-~d~(k,O))o (71) 

which upon rearrangement becomes 

/~'(k, s)[ 1 - s-t(o~*(k, O)(s - iL)--1 ~/(k, 0))o] 

= (ci*(k, O)(s-  iL) -~ ~(k, 0))o (72) 

Noting that 

(o~*(k, O)(s - iL)-' ~(k, 0))o = b e ( k  , S) (73) 

where ~/,,, is defined in (61), we have from (72) the form of the desired 
result, (64b), 

"x l-X 
K'(k, s )=  [1 - s -  qS(k, s)] - t  ~(k, s) (74) 

Equivalence between the memory functions in Eqs. (64a) and (64b) 
means that the transport equation arising from specification of the memory 
function in (44) is the same regardless of the memory function form used 
(under the LEA), Therefore, the LEA-based transport equation (63) 
derived here is equivalent to the analogous form previously derived 
through the projection operator technique, c~4) 

8. RESUME OF CONSTITUTIVE THEORY 

In this section we summarize the hierarchy of constitutive theories for 
diffusion and dispersion of a conservative tracer in a nondeforming porous 
medium. This listing encapsulates the results of this and previous efforts 
into a catalogue highlighting the general effects of heterogeneities of 
various spectra related to the scales of measurement, tl~ Such effects trans- 
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late (to concordant degrees) into wavevector and frequency dependences of 
the flux coefficients. While the general notions of wavevector- and fre- 
quency-dependent diffusive transport are established, ~1'12~ the deployment 
of these concepts in hydrogeology especially is recent c~6~ and so we begin 
here. 

8.1. Dif fusive Flux 

For preasymptotic diffusion, I ~6~ 

q =  - D ( y , ~ ) ' V x _ y G ( x - y , t - z ) d y &  (75) 
R3 

For asymptotic diffusion, II~ 

q =  - D - V x G ( x ,  t) (76) 

Preasymptotic diffusion as depicted in Eq.(75) portrays diffusive 
spreading on a measurement scale within a continuous spectrum of 
heterogeneities, that is, spreading as observed in a medium with con- 
tinuously evolving heterogeneities, such as a fractal medium. In many 
natural cases, the measurement scale may grow beyond the upper end of 
the heterogeneity spectrum (e.g., above the upper fractal cutoff), in which 
case the model collapses to its Fickian precursor equation (76). The 
Fickian model is also applicable to homogenized systems and is a local, 
Markovian result. 

8.2. Dispersive Flux 

Analogous descriptors for dispersive fluxes arise in the presence of 
convection within the heterogeneous medium. These forms discriminate 
further under conditions of the LEA and/or temporal stationarity. 

For preasymptotic dispersion, the general nonequilibrium case, 

f2f q = ( v ( t ) ) G ( x , t ) -  D ~ ( y , t , z ) G ( x - y , t - ~ ) d y &  
R 3 

f2f - D 2 ( y , t , r ) . V ~ _ y G ( x - y , t - r ) d y &  (77) 
R ~ 

For preasymptotic LEA dispersion, ~4~ with particle fluctuation x'(t) 
under equilibrium conditions, (ls~ 

q = ( v ( t ) ) G ( x , t ) -  3 D ( y , t , r ) . V x _ y G ( x - y , t - r ) d y d r  (78) 
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For stationary preasymptotic LEA dispersion, ~ 17) 

q = ( v ( t ) ) G ( x , t ) - f ~ f R 3 O ( y , z ) . V x _ r G ( x - y , t - z ) d y d z  (79) 

For quasi-Fickian dispersion, I ~ 8, ~9~ 

q =  (v(t)> G(x, t ) - D ( x ,  t).VxG(X, t) (80) 

For Fickian dispersion, (20) 

q =  (v( t ) )  G(x, t ) - D - V x G ( x ,  t) (81) 

The general nonequilibrium result for dispersion [analogous to (75)] 
is (77); this form is linear, nonlocal, and non-Markovian and applies to 
systems exhibiting continuously evolving scales of heterogeneity. This 
form is distinguished from previous equilibrium expositions of nonlocai 
dependences of hydrodynamic dispersion 114~ through the additional term 
involving the particle location probability (as opposed to its gradient 
alone). This result has been found recently also from continuum 
arguments. ~6) When the convective velocity is small relative to the scales of 
heterogeneity, the assumption of local equilibrium of the particle displace- 
ment from the average is befitting, and (78) applies. Further, when time 
stationarity is invoked also [requiring the differential displacement (45) to 
be time-invariant], (79) is obtained. If the support of the dispersion tensor 
is highly localized in space and time, and if the assumptions leading to (79) 
hold, the model reduces to the quasi-Fickian form (80). Finally, if the 
transport is renormalized, i.e., if an asymptotic limit exists, then the 
classical Fickian model is obtained. 

9. EXAMPLES: S M A L L - W A V E - V E C T O R  REPRESENTATION 
OF THE DISPERSION TENSORS 

In this section we look at explicit representations of D j and D2 under 
certain simplifying assumptions and specifications of the nonequilibrium 
average velocity. All simplifications derive from directing our focus on the 
small-[k[ limit. We present first the simple velocity field ( v ( t ) ) = v ,  a 
constant, w i th / (  time stationary, i.e., 

/~(k, t, r )=  k'(k, r) d(k, t, r) 

,~ k'(k, r) A(k, $) (82) 
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Under  these conditions, from (44) we find 

G(k, s) = [ s -  ik"  v + K]  - '  (83) 

A Taylor  series expansion in k of 

d : <e  ik" [xOl - x(O)]] > (84)  

to order k 2 gives 

t~(k, t ) ~  1 + i k . v t + � 8 9  (85) 

where 

= < [x( t )  - x(0)]  [x( t )  - x(0)]  ) (86) 

is the mean square displacement of  the sample particle. The Laplace trans- 
form of (84) is 

~(k, s) ~ s - '  + i k .  vs -2 - �89 ~. k (87) 

From (87) and (83) to order k 2 we have 

~ , ~  1 - [ s - i k ' v ] [ s  - l  + i k . v s  - z - � 8 9  

s -1 + i k . v s  - z -  � 89  

,,~ - k "  [ v v s - '  - �89 k (88) 

But 

K =  i k .  f i l  - -  k ~  f i2  ~ k (89) 

implies 

61 = 0  (90) 

and 

1~ 2 = v v s - '  - �89 2 (91) 

In the asymptot ic  results of  (90) and (91) all terms are measurable 
experimentally. Should the mean square displacement ~ scale as a power 
law in principal directions (e.g., as in fractional Brownian motion) ,  then 

0 00) 
~(t) = a,.t a~ (92) 

0 a z t a: 

822/75/5-6.7 
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and 

( axI'T.d~+ 1] s -4~-1 

= o 

0 

In this special case we have 

0 
ayF[dy+ 1] S - d y - I  

0 

o ) 
0 

af f ' (d .+ 1)s -d-'- l 

(93) 

[a.,.F(d.,+ l)s-d.+ V] V~ V~. 
V~Vy a rF(d,.+ I) s-d"+ Vy 
V x V. V,. Vy 

V x V: ) 
V, V: 

a:F(d:+ 1)s-d:+ V~ 
(94) 

The constant-velocity case illustrates the phenomenological nature of 
the model, in that the small-[k[ behavior of the system is captured in the 
mean square displacement. This is the case for small-[k[ approximations 
under different assumed ensemble velocity fields in general. For instance, 
under conditions of uniform spatiotemporal recharge to unidirectional flow 
in a conceptual one-dimensional aquifer, the corresponding large-scale 
convective velocity (Eulerian) is linear in the space coordinate. 12~1 If one 
endorses this depiction and the resulting exponential Lagranglan velocity 
( v ( t ) )  = exp(at) as the nonequilibrium ensemble average velocity of the 
system, then an O(k 2) analysis yields, similarly to the foregoing, 

D~ = 0  (95) 

D2 = �89 1 - s2~(s)] (96) 

where again the D~ term is zero and the model is controlled through the 
mean square displacement function. 

A tangential yet important implication appears through such examina- 
tions of (77). The small-[k[ expansion of the exponential in the differential 
displacement term of (45) illustrates, for instance, that this term will 
become stationary only under time linearity of the displacement, or rather, 
constant ensemble velocity. The ramification is that time stationarity as 
required for the utility of the simplified models (79) (stationary pre- 
asymptotic LEA dispersion), (80) (quasi-Fickian dispersion), and (81) 
(Fickian dispersion) is not available without the assumption of constant 
ensemble average velocity. 
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10. D ISCUSSION 

The evolut ion of a tracer in a velocity field exhibi t ing excitements on 
a con t inuum of scales leads to a spatial ly and tempora l ly  noniocal  
general izat ion of Fick 's  first law. The law has been derived herein via a 
nonequi l ibr ium generalized hydrodynamics  based upon a newly derived 
generalized Liouvil le  equat ion.  The most  general  result was derived in the 
classical l imit wi thout  approx imat ion .  This result is consistent  with that  of 
Neuman,  t6) which was derived from a con t inuum perspective. Under  
appropr i a t e  l imiting condi t ions,  the theory was shown consistent  with 
earl ier  work  by the authors.  A hierarchy of  const i tut ive theories based on 
the complexi ty  of  the heterogeneit ies (exci tat ions)  was summarized  and 
various l imit ing condi t ions  for the dispersion coefficients were analyzed.  In 
the case of constant  expected velocity with s ta t ionary  f luctuations and with 
power  law scaling of the mean square displacement ,  a very simple expres- 
sion for the dispers ion tensor  in the small- lkl  l imit was derived in terms of 
measurable  quantit ies.  
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